ANNEX 6 Additional Information

6.1. Global Warming Potential Values

Global Warming Potentials (GWPs) are intended as a quantified measure of the globally averaged relative radiative forcing impacts of a particular greenhouse gas. It is defined as the cumulative radiative forcing—both direct and indirect effects—integrated over a period of time from the emission of a unit mass of gas relative to some reference gas (IPCC 1996). Carbon dioxide (CO₂) was chosen as this reference gas. Direct effects occur when the gas itself is a greenhouse gas. Indirect radiative forcing occurs when chemical transformations involving the original gas produce a gas or gases that are greenhouse gases, or when a gas influences other radiatively important processes such as the atmospheric lifetimes of other gases. The relationship between gigagrams (Gg) of a gas and Tg CO₂ Eq. can be expressed as follows:

11
$$\operatorname{Tg} \operatorname{CO}_{2} \operatorname{Eq} = \left(\operatorname{Gg} \operatorname{of} \operatorname{gas}\right) \times \left(\operatorname{GWP}\right) \times \left(\frac{\operatorname{Tg}}{1,000 \operatorname{Gg}}\right)$$

Where,

Tg CO₂ Eq. = Teragrams of Carbon Dioxide Equivalents

Gg = Gigagrams (equivalent to a thousand metric tons)

GWP = Global Warming Potential

Tg = Teragrams

GWP values allow policy makers to compare the impacts of emissions and reductions of different gases. According to the IPCC, GWPs typically have an uncertainty of roughly ±35 percent, though some GWPs have larger uncertainty than others, especially those in which lifetimes have not yet been ascertained. In the following decision, the parties to the UNFCCC have agreed to use consistent GWPs from the IPCC Second Assessment Report (SAR), based upon a 100 year time horizon, although other time horizon values are available (see Table A-229).

In addition to communicating emissions in units of mass, Parties may choose also to use global warming potentials (GWPs) to reflect their inventories and projections in carbon dioxide-equivalent terms, using information provided by the Intergovernmental Panel on Climate Change (IPCC) in its Second Assessment Report. Any use of GWPs should be based on the effects of the greenhouse gases over a 100-vear time horizon. In addition, Parties may also use other time horizons.⁷⁸

Greenhouse gases with relatively long atmospheric lifetimes (e.g., CO₂, CH₄, N₂O, HFCs, PFCs, and SF₆) tend to be evenly distributed throughout the atmosphere, and consequently global average concentrations can be determined. The short-lived gases such as water vapor, carbon monoxide, tropospheric ozone, other indirect greenhouse gases (e.g., NO_x, and NMVOCs), and tropospheric aerosols (e.g., SO₂ products and black carbon), however, vary spatially, and consequently it is difficult to quantify their global radiative forcing impacts. GWP values are generally not attributed to these gases that are short-lived and spatially inhomogeneous in the atmosphere.

Table A-229: Global Warming Potentials (GWP) and Atmospheric Lifetimes (Years) of Gases Used in this Report

Gas	Atmospheric Lifetime	100-year GWP ^a	20-year GWP	500-year GWP
Carbon dioxide (CO ₂)	50-200	1	1	1
Methane (CH ₄)b	12±3	21	56	6.5
Nitrous oxide (N ₂ O)	120	310	280	170
HFC-23	264	11,700	9,100	9,800
HFC-125	32.6	2,800	4,600	920

⁷⁸ Framework Convention on Climate Change; FCCC/CP/1996/15/Add.1; 29 October 1996; Report of the Conference of the Parties at its second session; held at Geneva from 8 to 19 July 1996; Addendum; Part Two: Action taken by the Conference of the Parties at its second session; Decision 9/CP.2; Communications from Parties included in Annex I to the Convention: guidelines, schedule and process for consideration; Annex: Revised Guidelines for the Preparation of National Communications by Parties Included in Annex I to the Convention; p. 18. FCCC (1996)

HFC-134a	14.6	1,300	3,400	420
HFC-143a	48.3	3,800	5,000	1,400
HFC-152a	1.5	140	460	42
HFC-227ea	36.5	2,900	4,300	950
HFC-236fa	209	6,300	5,100	4,700
HFC-4310mee	17.1	1,300	3,000	400
CF ₄	50,000	6,500	4,400	10,000
C ₂ F ₆	10,000	9,200	6,200	14,000
C ₄ F ₁₀	2,600	7,000	4,800	10,100
C ₆ F ₁₄	3,200	7,400	5,000	10,700
SF ₆	3,200	23,900	16,300	34,900

Source: IPCC (1996)

^a GWPs used in this report are calculated over 100 year time horizon

Table A-230 presents direct and net (i.e., direct and indirect) GWPs for ozone-depleting substances (ODSs). Ozone-depleting substances directly absorb infrared radiation and contribute to positive radiative forcing; however, their effect as ozone-depleters also leads to a negative radiative forcing because ozone itself is a potent greenhouse gas. There is considerable uncertainty regarding this indirect effect; therefore, a range of net GWPs is provided for ozone depleting substances.

Table A-230: Net 100-year Global Warming Potentials for Select Ozone Depleting Substances*

Gas	Direct	Net _{min}	Net _{max}
CFC-11	4,600	(600)	3,600
CFC-12	10,600	7,300	9,900
CFC-113	6,000	2,200	5,200
HCFC-22	1,700	1,400	1,700
HCFC-123	120	20	100
HCFC-124	620	480	590
HCFC-141b	700	(5)	570
HCFC-142b	2,400	1,900	2,300
CHCl ₃	140	(560)	0
CCI ₄	1,800	(3,900)	660
CH₃Br	5	(2,600)	(500)
Halon-1211	1,300	(24,000)	(3,600)
Halon-1301	6,900	(76,000)	(9,300)

Source: IPCC (2001)

* Because these compounds have been shown to deplete stratospheric ozone, they are typically referred to as ozone depleting substances (ODSs). However, they are also potent greenhouse gases. Recognizing the harmful effects of these compounds on the ozone layer, in 1987 many governments signed the *Montreal Protocol on Substances that Deplete the Ozone Layer* to limit the production and importation of a number of CFCs and other halogenated compounds. The United States furthered its commitment to phase-out ODSs by signing and ratifying the Copenhagen Amendments to the *Montreal Protocol* in 1992. Under these amendments, the United States committed to ending the production and importation of halons by 1994, and CFCs by 1996. The IPCC Guidelines and the UNFCCC do not include reporting instructions for estimating emissions of ODSs because their use is being phased-out under the *Montreal Protocol*. The effects of these compounds on radiative forcing are not addressed in this report.

The IPCC has published its Third Assessment Report (TAR), providing the most current and comprehensive scientific assessment of climate change (IPCC 2001). Within this report, the GWPs of several gases were revised relative to the IPCC's Second Assessment Report (SAR) (IPCC 1996), and new GWPs have been calculated for an expanded set of gases. Since the SAR, the IPCC has applied an improved calculation of CO₂ radiative forcing and an improved CO₂ response function (presented in WMO 1999). The GWPs are drawn from WMO (1999) and the SAR, with updates for those cases where new laboratory or radiative transfer results have been published. Additionally, the atmospheric lifetimes of some gases have been recalculated. Because the revised radiative forcing of CO₂ is about 12 percent lower than that in the SAR, the GWPs of the other gases relative to CO₂ tend to be larger, taking into account revisions in lifetimes. However, there were some instances in which other variables, such as the radiative efficiency or the chemical lifetime, were altered that resulted in further increases or decreases in particular GWP values. In addition, the values for radiative forcing and lifetimes have been calculated for a variety of halocarbons, which were not presented in the SAR. The changes are described in the TAR as follows:

New categories of gases include fluorinated organic molecules, many of which are ethers that are proposed as halocarbon substitutes. Some of the GWPs have larger uncertainties than that of others,

b The methane GWP includes the direct effects and those indirect effects due to the production of tropospheric ozone and stratospheric water vapor. The indirect effect due to the production of CO₂ is not included.

particularly for those gases where detailed laboratory data on lifetimes are not yet available. The direct GWPs have been calculated relative to CO_2 using an improved calculation of the CO_2 radiative forcing, the SAR response function for a CO_2 pulse, and new values for the radiative forcing and lifetimes for a number of halocarbons.

Table A- 231 compares the lifetimes and GWPs for the SAR and TAR. As can be seen in Table A- 231, GWPs changed anywhere from a decrease of 35 percent to an increase of 49 percent.

Table A-231: Comparison of GWPs and lifetimes used in the SAR and the TAR

Gas SAR TAR SAR TAR Difference Carbon dioxide (CO₂) 50:200 5:200 1 1 NC NC Methane (CH₄)* 12:3 8:41/2² 21 23 2 10% Nitrous oxide (N₂O) 120 1201/14² 310 296 (14) (5%) HFC-23 264 260 11,700 12,000 300 3% HFC-32 5.6 5.0 650 550 (100) (15%) HFC-41 3.7 2.6 150 97 (53) (35%) HFC-134 10.6 9.6 1,000 1,100 100 10% HFC-143 3.8 3.4 300 330	Table A- 231: Comparison o	Lifetime (ye		ne sak and the	GWP (100 ye	par)	
Carbon dioxide (CO2) 50-200 5-200* 1	Gas			SAR		Difference	
Methane (CH4)							NC
Nitrous oxide (N-O) HFC-23 264 260 11,700 12,000 300 300 3% HFC-32 5.6 5.0 650 550 (100) (15%) HFC-141 3.7 2.6 150 97 (53) (35%) HFC-125 32.6 29 2,800 3,400 600 21% HFC-134 10.6 9.6 11,000 11,000 11,000 1000 1000 11,000 1000 11,000 1000 1000 11,000 1000					-		
Hydrofluorocarbons Hydrofluorocarbons							
HFC-23 264 260 11,700 12,000 300 3% HFC-241 3.7 2.6 550 550 (100) (15%) HFC-141 3.7 2.6 150 97 (63) (35%) HFC-134 10.6 9.6 1,000 1,100 100 10% HFC-134a 14.6 13.8 1,300 1,300 NC NC HFC-143a 3.8 3.4 300 330 30 10% HFC-152 NA 0.5 NA 43 NA NA HFC-161 NA 0.5 NA 43 NA NA HFC-236cb 1.5 1.4 140 120 (20) (14%) HFC-236ca 3.6 33.0 2.900 3.500 600 21% HFC-236ca NA 10 NA 1,200 NA NA HFC-236ca 6.6 5.9 560 640 80		120	120/114	010	250	(14)	(570)
HFC-32	•	264	260	11 700	12 000	300	3%
HFC-41							
HFC-125 32.6 29 2,800 3,400 600 21% HFC-134a 10.6 9.6 1,000 1,100 100 10% HFC-134a 14.6 13.8 1,300 330 30 10% HFC-143 3.8 3.4 300 330 30 10% HFC-143a 48.3 52 3,800 4,300 500 13% HFC-152 NA 0.5 NA 43 NA NA HFC-152 NA 0.5 NA 43 NA NA HFC-152a 1.5 1.4 140 120 (20) (14%) HFC-161 NA 0.3 NA 12 NA NA HFC-27ea 36.5 33.0 2,900 3,500 600 21% HFC-238cb NA 10 NA 1,300 NA NA HFC-238ca NA 10 NA 1,200 NA NA HFC-238ca NA 10 NA 1,200 NA NA HFC-236ca 6.6 5.9 560 640 80 14% HFC-245ca 6.6 5.9 560 640 80 14% HFC-365mfc NA 9.9 NA 890 NA NA HFC-367 NA 9.9 NA 890 NA NA HFC-368 10,000 10,000 2,200 11,900 2,700 20% CF6 10,000 10,000 9,200 11,900 2,700 29% CF6 3,200 2,600 7,000 8,600 1,600 23% CAFe 3,200 3,200 2,600 7,000 8,600 1,600 23% CAFe 3,200 3,200 7,400 9,000 1,300 19% CF12 4,100 4,100 7,500 8,900 1,400 1,400 CF12 4,100 4,100 7,500 8,900 1,400 1,400 CF12 4,100 4,100 7,500 8,900 1,400 1,400 CF12 4,100 4,100 7,500 8,900 1,400 CF12 4,100 4,100 7,500 8,900 1,400 CF12 4,100 4,100 7,400 9							
HFC-134							
HFC-134a 14.6 13.8 1,300 1,300 NC NC HFC-143 3.8 3.4 300 330 30 10% HFC-143a 48.3 52 3,800 4,300 500 13% HFC-152 NA 0.5 NA 43 NA NA HFC-152a 1.5 1.4 140 120 (20) (14%) HFC-161 NA 0.3 NA 12 NA NA HFC-161 NA 0.3 NA 12 NA NA HFC-237ea 36.5 33.0 2,900 3,500 600 21% HFC-236eb NA 13.2 NA 1,300 NA NA HFC-236eb NA 13.2 NA 1,300 NA NA HFC-236ea NA 10 NA 1,200 NA NA HFC-236ea NA 7,2 NA 9,9 NA 9,0 NA NA HFC-236ea NA 7,2 NA 9,9 NA 9,0 NA NA HFC-365mfc NA 9,9 NA 9,9 NA 8,0 NA NA HFC-365mfc NA 9,9 NA 8,0 NA NA HFC-310mee 17.1 15 NC NC Fully Fluorinated Species SF6 3,200 3,200 23,900 22,200 (1,900) (7%) C6-Fa 10,000 10,000 9,200 11,900 2,700 29% Cβ-Fa 2,600 2,600 7,000 8,600 1,600 23% Cβ-Fa 2,600 2,600 7,000 8,600 1,600 23% Cβ-Fa 3,200 3,200 8,700 10,000 1,300 15% NA N							
HFC-143							
HFC-143a							
HFC-152							
HFC-152a 1.5 1.4 140 120 (20) (14%) HFC-161 NA 0.3 NA 12 NA NA HFC-227ea 36.5 33.0 2.900 3.500 600 21% HFC-236eb NA 13.2 NA 1,300 NA NA HFC-236ea NA 10 NA 1,200 NA NA HFC-245ea 6.6 5.9 560 640 80 14% HFC-245ea NA 7.2 NA 950 NA NA HFC-365mfc NA 9.9 NA 890 NA NA HFC-365mfc NA 9.9 NA 890 NA NA HFC-4310mee 17.1 15 1,300 1,500 200 15% Iodocarbons FIC-1311 < 0.005 0.005 < 1 1 NC NC Fully Fluorinated Species SF6 3.200 3.200 23,900 22,200 (1,900) (7%) CF4 50,000 50,000 6,500 5,700 (800) (12%) C₂F6 10,000 10,000 9,200 11,900 2,700 29% C₄F0 2,600 2,600 7,000 8,600 1,600 23% C₄F0 2,600 2,600 7,000 8,600 1,600 23% C₄F0 2,600 2,600 7,000 8,600 1,600 23% C₄F0 2,600 3,200 3,200 7,400 9,000 1,300 15% C₄F12 4,100 4,100 7,500 8,900 1,400 19% C₄F12 NA 1,40 1,40 1,50 NA 1,40 1,40 1,40 1,40 1,40 1,40 1,40 1,40							
HFC-161 NA 0.3 NA 12 NÁ NÁ HFC-227ea 36.5 33.0 2,900 3,500 600 21% HFC-236cb NA 13.2 NA 1,300 NA NA HFC-236cb NA 13.2 NA 1,300 NA NA HFC-236ca NA 10 NA 1,200 NA NA HFC-236ca NA 10 NA 1,200 NA NA HFC-236ca 6.6 5.9 560 640 80 14% HFC-245ca 6.6 6.5 9.9 560 640 80 14% HFC-245ca NA 7.2 NA 950 NA NA HFC-365mfc NA 9.9 NA 890 NA NA HFC-365mfc NA 9.9 NA 890 NA NA HFC-310mee 17.1 15 1,300 1,500 200 15% lodocarbons FIC-1311 < 0,005 0.005 <1 1 NC NC Fully Fluorinated Species SF6 3,200 3,200 23,900 22,200 (1,900) (7%) CF4 50,000 50,000 6,500 5,700 (800) (12%) CF5 10,000 10,000 9,200 11,900 2,700 29% CF6 10 2,600 2,600 7,000 8,600 1,600 23% CAF10 2,600 2,600 7,000 8,600 1,600 23% CAF10 2,600 3,200 8,700 10,000 1,300 15% CF14 3,200 3,200 8,700 10,000 1,300 15% NA N							
HFC-227ea 36.5 33.0 2,900 3,500 600 21% HFC-236cb NA 13.2 NA 1,300 NA NA HFC-236ca NA 10 NA 1,200 NA NA HFC-236fa 209 220 6,300 9,400 3,100 49% HFC-245ca 6.6 5.9 560 640 80 14% HFC-245fa NA 7.2 NA 950 NA NA HFC-365mfc NA 9.9 NA 890 NA NA HFC-365mfc NA 9.9 NA 890 NA NA HFC-4310mee 17.1 15 1,300 1,500 200 15% Iodocarbons FIC-1311 <0.005 0.005 <1 1 NC NC Fully Fluorinated Species SF6 3,200 3,200 23,900 22,200 (1,900) (7%) C₂Fa 10,000 10,000 6,500 5,700 (800) (12%) C₂Fa 2,600 2,600 7,000 8,600 1,600 23% C₃Fa 2,600 2,600 7,000 8,600 1,600 23% c₃Fa 3,200 3,200 8,700 10,000 1,300 15% C₃F12 4,100 4,100 7,500 8,900 1,400 19% C₃Fa 3,200 3,200 7,400 9,000 1,600 22% Ethers and Halogenated Ethers CH₃OCh₃ NA 3.4 NA 330 NA NA CF₃⟩CFOCH₃ NA 3.4 NA 330 NA NA CF₃⟩CFOCH₃ NA 0.015 NA 1 NA NA CF₃⟩CFOCH₃ NA 0.4 NA 40 NA NA CF₃⟩CFOCH₃ NA 0.4 NA 40 NA NA CF₃⟩CFOCH₃ NA 0.4 NA 40 NA NA CF₃⟩CFOCH₃ NA 0.5 NA 57 NA NA CF₃⟩CFOCH₃ NA 0.4 NA 40 NA NA HFE-125 NA 150 NA 14,900 NA NA HFE-144a NA 26.2 NA 6,100 NA NA HFE-145a NA 4.4 NA 750 NA NA HFE-146a NA 4.4 NA 570 NA NA HFE-245cb2 NA 4.4 NA 570 NA NA HFE-245cb2 NA 4.4 NA 570 NA NA HFE-347mc3 NA 4.5 NA 430 NA NA HFE-347mc3 NA 4.2 NA 430 NA NA HFE-356cb3 NA 3.2 NA 430 NA NA							
HFC-236cb							
HFC-2366a							
HFC-236fa 209 220 6,300 9,400 3,100 49% HFC-245ca 6.6 5.9 560 640 80 14% HFC-245ca NA 7.2 NA 950 NA NA NA HFC-365mfc NA 9.9 NA 890 NA NA HFC-365mfc NA 9.9 NA 890 NA NA NA HFC-310mee 17.1 15 1,300 1,500 200 15% 10docarbons FIC-1311 <0.005 0.005 <1 1 NC NC Fully Fluorinated Species SF6 3,200 3,200 23,900 22,200 (1,900) (7%) CF4 50,000 50,000 6,500 5,700 (800) (12%) C2F6 10,000 10,000 9,200 11,900 2,700 29% C4F10 2,600 2,600 7,000 8,600 1,600 23% C4F10 2,600 3,200 8,700 10,000 1,300 15% C2F12 4,100 4,100 7,500 8,900 1,400 19% C2F14 3,200 3,200 7,400 9,000 1,600 22% Ethers and Halogenated Ethers CH30CH3 NA 3.4 NA 330 NA NA CF3 ₂ CFOCH3 NA 3.4 NA 330 NA NA CF3 ₂ CFOCH3 NA 0.5 NA 57 NA NA CF3 ₂ CFOCH4 NA 0.4 NA 40 NA NA CF3 ₂ CHOCH NA 0.4 NA 40 NA NA CF3 ₂ CHOCH NA 0.4 NA 40 NA NA NA CF3 ₂ CHOCH NA 0.5 NA 190 NA NA NA CF3 ₂ CHOCH NA 0.4 NA 40 NA NA NA HFE-1334 NA 26.2 NA 3.0 NA NA NA HFE-143a NA 26.2 NA 3.0 NA NA NA HFE-255de2 NA 4.4 NA 570 NA NA NA HFE-255de2 NA 4.4 NA 570 NA NA NA HFE-254cb2 NA 4.4 NA 4.5 NA 4.8 NA NA HFE-347mc3 NA 4.5 NA 4.5 NA 4.50 NA NA HFE-347mc3 NA 3.2 NA 4.5 NA 4.50 NA NA NA HFE-347mc3 NA 3.2 NA 4.5 NA 4.50 NA NA HFE-347mc3 NA 3.2 NA 4.50 NA NA NA HFE-3456pc3 NA 3.2 NA 4.50 NA NA NA HFE-347mc3 NA 3.2 NA 4.50 NA NA NA HFE-3456pc3 N							
HFC-245ca 6.6 5.9 560 640 80 14% HFC-245fa NA 7.2 NA 950 NA NA HFC-636mfc NA 9.9 NA 880 NA NA HFC-4310mee 17.1 15 1,300 1,500 200 15% lodocarbons FIC-1311							
HFC-245fa NA 7.2 NA 950 NA NA NA HFC-365mfc NA 9.9 NA 890 NA NA NA HFC-365mfc NA 9.9 NA 890 NA NA NA HFC-4310mee 17.1 15 1,300 1,500 200 15% lodocarbons FIC-1311							
HFC-365mfc NA 9.9 NA 890 NA NA NA HFC-4310mee 17.1 15 1,300 1,500 200 15% 200 200 15% 200 200 200 15% 200 200 200 200 200 200 200 200 200 20							
HFC-4310mee 17.1 15 1,300 1,500 200 15% lodocarbons FIC-1311							
The color of the							
FIC-1311				1,000	1,000	200	1070
SF6 3,200 3,200 23,900 22,200 (1,900) (7%) CF4 50,000 50,000 6,500 5,700 (800) (12%) C2F6 10,000 10,000 9,200 11,900 2,700 29% C3F8 2,600 2,600 7,000 8,600 1,600 23% C4F10 2,600 3,200 8,700 10,000 1,300 15% C3F12 4,100 4,100 7,500 8,900 1,400 19% C6F14 3,200 3,200 7,400 9,000 1,600 22% Ethers and Halogenated Ethers Ethers CH3OCH3 NA 3.4 NA 330 NA NA (CF3)2CFOCH3 NA 3.4 NA 330 NA NA (CF3)2CHOH NA 0.5 NA 57 NA NA (CF3)2CHOH NA 0.4 NA 40 NA NA (CF3)2CHOH NA 1.8 NA 190 NA NA (CF3)2CHOH NA 1.8 NA 190 NA NA (CF3)2CHOH NA 1.8 NA 190 NA NA (FF-235da2 NA 4.4 NA 750 NA NA NA (FF-235da2 NA 4.4 NA 570 NA NA (FF-245cb2 NA 4.5 NA 4.5 NA 570 NA NA NA (FF-245cb2 NA 4.4 NA 570 NA NA NA (FF-245cb2 NA 4.5 NA 4.8 NA 4.8 NA NA NA (FF-245cb2 NA 4.4 NA 570 NA NA NA (FF-245cb2 NA 4.5 NA 4.8 NA 4.8 NA NA NA (FF-245cb2 NA 4.5 NA 4.8 NA 4.8 NA NA NA (FF-245cb2 NA 4.5 NA 4.8 NA 4.8 NA NA NA (FF-245cb2 NA 4.5 NA 4.8 NA 4.8 NA NA NA (FF-245cb2 NA 4.5 NA 4.5 NA 4.8 NA NA NA (FF-245cb2 NA 4.5 NA 4.5 NA 4.8 NA NA NA (FF-245cb2 NA 4.5 NA 4.5 NA 4.8 NA NA NA (FF-245cb2 NA 4.5 NA 4.5 NA 4.8 NA 4.8 NA NA NA (FF-245cb2 NA 4.5 NA 4.5 NA 4.8 NA 4.8 NA NA NA (FF-245cb2 NA 4.5 NA 4.5 NA 4.8 NA 4.8 NA NA (FF-245cb2 NA 4.5		< 0.005	0.005	<1	1	NC	NC
SF6 3,200 3,200 23,900 22,200 (1,900) (7%) CF4 50,000 50,000 6,500 5,700 (800) (12%) CzF6 10,000 10,000 9,200 11,900 2,700 29% CsF8 2,600 2,600 7,000 8,600 1,600 23% CsF10 2,600 2,600 7,000 8,600 1,600 23% c-C4F8 3,200 3,200 8,700 10,000 1,300 15% CsF12 4,100 4,100 7,500 8,900 1,400 19% CsF14 3,200 3,200 7,400 9,000 1,600 22% Ethers and Halogenated Ethers CH30CH3 NA 3.4 NA 330 NA NA CH30CH3 NA 3.4 NA 330 NA NA CF3)2CFOCH3 NA 3.4 NA 330 NA NA CF3)2CH2OH <				·			
CF4 50,000 50,000 6,500 5,700 (800) (12%) C ₂ F ₆ 10,000 10,000 9,200 11,900 2,700 29% C ₃ F ₈ 2,600 2,600 7,000 8,600 1,600 23% C ₄ F ₁₀ 2,600 2,600 7,000 8,600 1,600 23% C ₄ F ₁₀ 2,600 3,200 8,700 10,000 1,300 15% C ₆ F ₁₂ 4,100 4,100 7,500 8,900 1,400 19% C ₆ F ₁₄ 3,200 3,200 7,400 9,000 1,600 22% Ethers and Halogenated Ethers Ethers 8 1 NA NA 0.015 NA 1 NA NA C(F ₃) ₂ CFOCH ₃ NA 3.4 NA 330 NA NA C(F ₃) ₂ CFOCH ₃ NA 3.4 NA 330 NA NA C(F ₃) ₂ CHOH NA 0.5 NA 17		3.200	3.200	23.900	22.200	(1.900)	(7%)
C₂F6 10,000 10,000 9,200 11,900 2,700 29% C₃F8 2,600 2,600 2,600 7,000 8,600 1,600 23% C₄F10 2,600 2,600 2,600 7,000 8,600 1,600 23% c-C₄F8 3,200 3,200 8,700 10,000 1,300 15% C₅F12 4,100 4,100 7,500 8,900 1,400 19% C₅F14 3,200 3,200 7,400 9,000 1,600 22% Ethers and Halogenated Ethers 8 8 900 1,400 19% C♭F14 3,200 3,200 7,400 9,000 1,600 22% Ethers and Halogenated Ethers 8 8 900 1,400 19% 19% 19% 1,600 22% 2% Ethers and Halogenated Ethers 8 8 900 1,400 19% 1,600 1,600 1,600 1,600							
C₃F₀ 2,600 2,600 7,000 8,600 1,600 23% C₄F₁0 2,600 2,600 7,000 8,600 1,600 23% c-C₄F₀ 3,200 3,200 8,700 10,000 1,300 15% C₅F₁2 4,100 4,100 7,500 8,900 1,400 19% C₆F₁4 3,200 3,200 7,400 9,000 1,600 22% Ethers and Halogenated Ethers and Halogenated 8 8 9,000 1,600 22% Ethers and Halogenated 8 8 8 9,000 1,600 22% Ethers and Halogenated 8 8 9,000 1,600 22% Ethers and Halogenated 8 8 9,000 1,600 22% Ethers and Halogenated 8 8 9,000 1,600 9,000 1,600 9,000 1,600 9,000 1,600 9,000 1,600 9,000 1,600 9,000 1,600 9,000							
C4F₁0 2,600 2,600 7,000 8,600 1,600 23% c-C₄F8 3,200 3,200 8,700 10,000 1,300 15% C₅F₁2 4,100 4,100 7,500 8,900 1,400 19% C₅F₁4 3,200 3,200 7,400 9,000 1,600 22% Ethers 8 8 8 8,900 1,400 19% C₅F₁4 3,200 3,200 7,400 9,000 1,600 22% Ethers 8 8 8 1,600 NA NA NA CF3)2CFOCH3 NA 0.015 NA 1 NA NA NA CF3)2CFOCH3 NA 0.4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
C ₆ F ₁₄ 3,200 3,200 7,400 9,000 1,600 22% Ethers CH ₃ OCH ₃ NA 0.015 NA 1 NA							
Ethers and Halogenated CH ₃ OCH ₃ NA 0.015 NA 1 NA NA (CF ₃) ₂ CFOCH ₃ NA 3.4 NA 330 NA NA (CF ₃)CH ₂ OH NA 0.5 NA 57 NA NA CF ₃ CF ₂ CH ₂ OH NA 0.4 NA 40 NA NA (CF ₃) ₂ CHOH NA 1.8 NA 190 NA NA HFE-125 NA 150 NA 14,900 NA NA HFE-134 NA 26.2 NA 6,100 NA NA HFE-143a NA 4.4 NA 750 NA NA HCFE-235da2 NA 2.6 NA 340 NA NA HFE-245cb2 NA 4.3 NA 580 NA NA HFE-347mcc3 NA 0.22 NA 30 NA NA HFE-356pcf3 NA 3.2							
Ethers CH ₃ OCH ₃ NA 0.015 NA 1 NA NA (CF ₃) ₂ CFOCH ₃ NA 3.4 NA 330 NA NA (CF ₃)CH ₂ OH NA 0.5 NA 57 NA NA CF ₃ CF ₂ CH ₂ OH NA 0.4 NA 40 NA NA (CF ₃) ₂ CHOH NA 1.8 NA 190 NA NA HFE-125 NA 150 NA 14,900 NA NA HFE-134 NA 26.2 NA 6,100 NA NA HFE-143a NA 4.4 NA 750 NA NA HCFE-235da2 NA 4.4 NA 340 NA NA HFE-245cb2 NA 4.3 NA 580 NA NA HFE-245cb2 NA 4.4 NA 570 NA NA HFE-347mcc3 NA 4.5 NA 480 NA			·				
(CF3)2CFOCH3 NA 3.4 NA 330 NA NA (CF3)CH2OH NA 0.5 NA 57 NA NA CF3CF2CH2OH NA 0.4 NA 40 NA NA (CF3)2CHOH NA 1.8 NA 190 NA NA HFE-125 NA 150 NA 14,900 NA NA HFE-134 NA 26.2 NA 6,100 NA NA HFE-143a NA 4.4 NA 750 NA NA HCFE-235da2 NA 4.4 NA 340 NA NA HFE-245cb2 NA 4.3 NA 580 NA NA HFE-245cb2 NA 4.4 NA 570 NA NA HFE-347mcc3 NA 4.5 NA 30 NA NA HFE-356pcf3 NA 3.2 NA 430 NA NA							
(CF3)CH2OH NA 0.5 NA 57 NA NA CF3CF2CH2OH NA 0.4 NA 40 NA NA (CF3)2CHOH NA 1.8 NA 190 NA NA HFE-125 NA 150 NA 14,900 NA NA HFE-134 NA 26.2 NA 6,100 NA NA HFE-143a NA 4.4 NA 750 NA NA HCFE-235da2 NA 2.6 NA 340 NA NA HFE-245cb2 NA 4.3 NA 580 NA NA HFE-245fa2 NA 4.4 NA 570 NA NA HFE-347mcc3 NA 0.22 NA 30 NA NA HFE-356pcf3 NA 3.2 NA 430 NA NA	CH ₃ OCH ₃	NA	0.015	NA	1	NA	NA
CF3CF2CH2OH NA 0.4 NA 40 NA NA (CF3)2CHOH NA 1.8 NA 190 NA NA HFE-125 NA 150 NA 14,900 NA NA HFE-134 NA 26.2 NA 6,100 NA NA HFE-143a NA 4.4 NA 750 NA NA HCFE-235da2 NA 2.6 NA 340 NA NA HFE-245cb2 NA 4.3 NA 580 NA NA HFE-245fa2 NA 4.4 NA 570 NA NA HFE-347mcc3 NA 0.22 NA 30 NA NA HFE-356pcf3 NA 3.2 NA 430 NA NA	(CF ₃) ₂ CFOCH ₃	NA	3.4	NA	330	NA	NA
(CF3)2CHOH NA 1.8 NA 190 NA NA HFE-125 NA 150 NA 14,900 NA NA HFE-134 NA 26.2 NA 6,100 NA NA HFE-143a NA 4.4 NA 750 NA NA HCFE-235da2 NA 2.6 NA 340 NA NA HFE-245cb2 NA 4.3 NA 580 NA NA HFE-245fa2 NA 4.4 NA 570 NA NA HFE-254cb2 NA 0.22 NA 30 NA NA HFE-347mcc3 NA 4.5 NA 480 NA NA HFE-356pcf3 NA 3.2 NA 430 NA NA	(CF ₃)CH ₂ OH	NA	0.5	NA	57	NA	NA
HFE-125 NA 150 NA 14,900 NA NA HFE-134 NA 26.2 NA 6,100 NA NA HFE-143a NA 4.4 NA 750 NA NA HCFE-235da2 NA 2.6 NA 340 NA NA HFE-245cb2 NA 4.3 NA 580 NA NA HFE-245fa2 NA 4.4 NA 570 NA NA HFE-254cb2 NA 0.22 NA 30 NA NA HFE-347mcc3 NA 4.5 NA 480 NA NA HFE-356pcf3 NA 3.2 NA 430 NA NA	CF ₃ CF ₂ CH ₂ OH	NA	0.4	NA	40	NA	NA
HFE-125 NA 150 NA 14,900 NA NA HFE-134 NA 26.2 NA 6,100 NA NA HFE-143a NA 4.4 NA 750 NA NA HCFE-235da2 NA 2.6 NA 340 NA NA HFE-245cb2 NA 4.3 NA 580 NA NA HFE-245fa2 NA 4.4 NA 570 NA NA HFE-254cb2 NA 0.22 NA 30 NA NA HFE-347mcc3 NA 4.5 NA 480 NA NA HFE-356pcf3 NA 3.2 NA 430 NA NA	(CF ₃) ₂ CHOH	NA	1.8	NA	190	NA	NA
HFE-143a NA 4.4 NA 750 NA NA HCFE-235da2 NA 2.6 NA 340 NA NA HFE-245cb2 NA 4.3 NA 580 NA NA HFE-245fa2 NA 4.4 NA 570 NA NA HFE-254cb2 NA 0.22 NA 30 NA NA HFE-347mcc3 NA 4.5 NA 480 NA NA HFE-356pcf3 NA 3.2 NA 430 NA NA	HFE-125	NA		NA	14,900	NA	NA
HCFE-235da2 NA 2.6 NA 340 NA NA HFE-245cb2 NA 4.3 NA 580 NA NA HFE-245fa2 NA 4.4 NA 570 NA NA HFE-254cb2 NA 0.22 NA 30 NA NA HFE-347mcc3 NA 4.5 NA 480 NA NA HFE-356pcf3 NA 3.2 NA 430 NA NA	HFE-134	NA	26.2	NA	6,100	NA	NA
HFE-245cb2 NA 4.3 NA 580 NA NA HFE-245fa2 NA 4.4 NA 570 NA NA HFE-254cb2 NA 0.22 NA 30 NA NA HFE-347mcc3 NA 4.5 NA 480 NA NA HFE-356pcf3 NA 3.2 NA 430 NA NA	HFE-143a	NA	4.4	NA	750	NA	NA
HFE-245fa2 NA 4.4 NA 570 NA NA HFE-254cb2 NA 0.22 NA 30 NA NA HFE-347mcc3 NA 4.5 NA 480 NA NA HFE-356pcf3 NA 3.2 NA 430 NA NA	HCFE-235da2	NA		NA			NA
HFE-254cb2 NA 0.22 NA 30 NA NA HFE-347mcc3 NA 4.5 NA 480 NA NA HFE-356pcf3 NA 3.2 NA 430 NA NA	HFE-245cb2			NA	580		NA
HFE-347mcc3 NA 4.5 NA 480 NA NA HFE-356pcf3 NA 3.2 NA 430 NA NA	HFE-245fa2						NA
HFE-356pcf3 NA 3.2 NA 430 NA NA	HFE-254cb2	NA	0.22	NA			NA
							NA
HFE-374pcf2 NA 5.0 NA 540 NA NA							
	HFE-374pcf2	NA	5.0	NA	540	NA	NA

HFE-7100	NA	5.0	NA	390	NA	NA
HFE-7200	NA	0.77	NA	55	NA	NA
H-Galden 1040x	NA	6.3	NA	1,800	NA	NA
HG-10	NA	12.1	NA	2,700	NA	NA
HG-01	NA	6.2	NA	1,500	NA	NA
Others ^d						
NF ₃	NA	740	NA	10,800	NA	NA
SF₅CF₃	NA	>1,000	NA	>17,500	NA	NA
c-C₃F ₆	NA	>1,000	NA	>16,800	NA	NA
HFE-227ea	NA	11	NA	1,500	NA	NA
HFE-236ea2	NA	5.8	NA	960	NA	NA
HFE-236fa	NA	3.7	NA	470	NA	NA
HFE-245fa1	NA	2.2	NA	280	NA	NA
HFE-263fb2	NA	0.1	NA	11	NA	NA
HFE-329mcc2	NA	6.8	NA	890	NA	NA
HFE-338mcf2	NA	4.3	NA	540	NA	NA
HFE-347-mcf2	NA	2.8	NA	360	NA	NA
HFE-356mec3	NA	0.94	NA	98	NA	NA
HFE-356pcc3	NA	0.93	NA	110	NA	NA
HFE-356pcf2	NA	2.0	NA	260	NA	NA
HFE-365mcf3	NA	0.11	NA	11	NA	NA
(CF ₃) ₂ CHOCHF ₂	NA	3.1	NA	370	NA	NA
(CF ₃) ₂ CHOCH ₃	NA	0.25	NA	26	NA	NA
-(CF ₂) ₄ CH(OH)-	NA	0.85	NA	70	NA	NA

^a No single lifetime can be determined for CO2. (See IPCC 2001)

When the GWPs from the TAR are applied to the emission estimates presented in this report, total emissions for the year 2006 are 7,219.7 Tg CO₂ Eq., as compared to 7,201.9 Tg CO₂ Eq. when the GWPs from the SAR are used (a 0.2 percent difference). Table A-232 provides a detailed summary of U.S. greenhouse gas emissions and sinks for 1990 through 2006, using the GWPs from the TAR. The adjusted greenhouse gas emissions are shown for each gas in units of Tg CO₂ Eq. in Table A-233. The correlating percent change in emissions of each gas is shown in Table A-234. The percent change in emissions is equal to the percent change in the GWP, however, in cases where multiple gases are emitted in varying amounts the percent change is variable over the years, such as with substitutes for ozone depleting substances. Table A-235 summarizes the emissions and resulting change in emissions using GWPs from the SAR or the TAR for 1990 and 2006.

Table A-232: Recent Trends in U.S. Greenhouse Gas Emissions and Sinks using the TAR GWPs (Tg CO₂ Eq.)

Gas/Source	1990	1995		2000	2001	2002	2003	2004	2005	2006
CO ₂	5,067.2	5,392.8	5	,938.2	5,844.8	5,907.2	5,971.1	6,055.9	6,093.4	5,983.1
Fossil Fuel Combustion	4,724.1	5,032.4	5	,577.1	5,507.4	5,564.8	5,636.9	5,700.5	5,751.5	5,639.4
Electricity Generation	1,809.6	1,939.3	2	,282.3	2,244.3	2,253.7	2,283.1	2,314.9	2,380.2	2,328.2
Transportation	1,473.5	1,590.2	1	,791.9	1,770.3	1,823.8	1,821.4	1,868.5	1,883.1	1,850.1
Industrial	849.9	880.6		863.2	855.0	857.3	858.8	861.0	850.9	866.1
Residential	344.4	359.9		374.3	365.4	362.3	385.0	370.8	360.9	328.7
Commercial	218.5	227.5	_	229.2	223.3	223.7	237.6	231.9	223.2	211.4
US Territories	28.3	35.0		36.2	49.0	44.0	51.0	53.5	53.2	54.9
Non-Energy Use of Fuels	117.2	133.2		141.4	131.9	135.9	131.8	148.9	139.1	138.0
Iron and Steel Production	84.9	73.3		65.1	57.9	54.6	53.4	51.3	45.2	47.7
Cement Manufacture	33.3	36.8	_	41.2	41.4	42.9	43.1	45.6	45.9	45.7
Natural Gas Systems	33.7	33.8		29.4	28.8	29.6	28.4	28.1	29.5	28.5
Municipal Solid Waste Combustion	10.9	15.7		17.5	18.0	18.5	19.1	20.1	20.7	20.9
Lime Manufacture	12.0	14.0		14.9	14.3	13.7	14.5	15.2	15.1	15.8
Ammonia Manufacture and Urea	_		_							
Consumption	16.9	17.8		16.4	13.3	14.2	12.5	13.2	12.8	12.4

^b The methane GWP includes the direct effects and those indirect effects due to the production of tropospheric ozone and stratospheric water vapor. The indirect effect due to the production of CO₂ is not included.

o Methane and nitrous oxide have chemical feedback systems that can alter the length of the atmospheric response, in these cases, global mean atmospheric lifetime (LT) is given first, followed by perturbation time (PT).

d Gases whose lifetime has been determined only via indirect means or for whom there is uncertainty over the loss process.

Source: IPCC (2001)

NC (No Change)

NA (Not Applicable)

Limestone and Dolomite Use	5.5 7.1	7.4 7.0	6.0 7.5	5.7 7.8	5.9 8.5	4.7 8.3	6.7 7.6	7.4 7.9	8.6 8.0
Cropland Remaining Cropland	7.1	7.0	7.5	7.8	6.5	0.3	7.0	7.9	8.0
Soda Ash Manufacture and	4.4	4.0	4.0	4.4	4.4	4.4	4.0	4.0	4.0
Consumption	4.1	4.3	4.2	4.1	4.1	4.1	4.2	4.2	4.2
Aluminum Production	6.8	5.7	6.1	4.4	4.5	4.5	4.2	4.2	3.9
Petrochemical Production	2.2	2.8	3.0	2.8	2.9	2.8	2.9	2.8	2.6
Titanium Dioxide Production	1.2	1.5	1.8	1.7	1.8	1.8	2.1	1.8	1.9
Carbon Dioxide Consumption	1.4	1.4	1.4	8.0	1.0	1.3	1.2	1.3	1.6
Ferroalloy Production	2.2	2.0	1.9	1.5	1.3	1.3	1.4	1.4	1.5
Phosphoric Acid Production	1.5	1.5	1.4	1.3	1.3	1.4	1.4	1.4	1.2
Zinc Production	0.9	1.0	1.1	1.0	0.9	0.5	0.5	0.5	0.5
Petroleum Systems	0.4	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Lead Production	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3	0.3
Silicon Carbide Production and									
Consumption	0.4	0.3	0.2	0.2	0.2	0.2	0.2	0.2	0.2
Land Use, Land-Use Change,	_								
and Forestry (Sink) ^a	(736.6)	(774.5)	(672.9)	(749.6)	(826.0)	(860.3)	(873.0)	(877.9)	(882.9)
Wood Biomass and Ethanol									
Consumption ^b	219.3	236.8	227.3	203.2	204.4	209.5	224.8	227.4	234.7
International Bunker Fuels ^b	113.7	100.6	101.1	97.6	89.1	83.7	99.8	102.1	125.7
CH ₄	666.7	655.1	623.5	608.2	610.6	611.9	597.6	590.3	594.0
Enteric Fermentation	139.0	144.9	136.4	135.4	135.6	136.4	134.0	136.3	138.2
Landfills	163.9	157.8	132.3	128.7	131.6	137.6	134.3	135.5	137.7
Natural Gas Systems	136.5	140.3	138.6	137.3	136.7	135.1	124.8	112.2	112.2
Coal Mining	92.1	73.4	66.1	66.1	62.3	62.3	65.4	62.5	64.0
Manure Management	33.9	38.6	42.5	44.0	45.2	44.6	43.9	45.7	45.4
Petroleum Systems	37.1	35.1	33.2	33.0	32.7	32.0	31.5	31.0	31.1
Wastewater Treatment	25.2	26.6	27.0	26.5	26.4	26.2	26.2	26.0	26.1
Forest Land Remaining Forest Land	7.7	4.3	15.3	6.6	11.4	8.8	7.6	12.7	12.7
Stationary Combustion	8.1	7.9	7.3	6.8	6.8	7.1	7.0	7.1	6.8
Rice Cultivation	7.8	8.3	8.2	8.4	7.5	7.1	8.3	7.1	6.5
	1.0	0.3	0.2	0.4	7.5	7.0	0.3	1.5	0.5
Abandoned Underground Coal	C C	0.0	0,1	7.0	C 7	C F	C 4	C 1	F 0
Mines	6.6	9.0	8.1	7.3	6.7	6.5	6.4	6.1	5.9
Mobile Combustion	5.1	4.7	3.7	3.6	3.3	3.0	2.9	2.8	2.6
Composting	0.4	0.8	1.4	1.4	1.4	1.6	1.7	1.7	1.7
Petrochemical Production	0.9	1.2	1.3	1.2	1.2	1.2	1.3	1.2	1.1
Iron and Steel Production	1.4	1.4	1.3	1.2	1.1	1.1	1.1	1.0	1.0
Field Burning of Agricultural	0.0				0.0	0.0	4.0	0.0	
Residues	0.8	0.7	0.9	8.0	8.0	0.9	1.0	0.9	0.9
Ferroalloy Production	+	+	+	+	+	+	+	+	+
Silicon Carbide Production and	_								
Consumption	+	+	+	+	+	+	+	+	+
International Bunker Fuels ^b	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2
N₂O	520.3	533.9	531.1	549.4	519.7	495.5	493.0	513.5	507.7
Agricultural Soil Management	411.1	408.9	413.0	438.8	411.0	390.7	390.7	413.0	410.3
Mobile Combustion	41.6	51.0	50.1	47.6	43.9	40.6	38.0	34.8	31.6
Nitric Acid Production	16.2	18.0	17.8	14.4	15.6	14.7	14.5	15.1	14.9
Stationary Combustion	12.3	12.8	14.0	13.5	13.4	13.7	13.9	14.1	13.9
Manure Management	11.5	12.2	13.1	13.4	13.3	13.0	13.2	13.3	13.6
Wastewater Treatment	6.0	6.6	7.2	7.4	7.3	7.4	7.5	7.6	7.7
Adipic Acid Production	14.6	16.6	5.9	4.8	5.8	6.1	5.7	5.7	5.7
N₂O Product Usage	4.2	4.4	4.7	4.7	4.2	4.2	4.2	4.2	4.2
Composting	0.3	0.8	1.3	1.3	1.3	1.5	1.6	1.7	1.7
Settlements Remaining Settlements	1.0	1.3	1.5	1.7	1.7	1.8	1.8	1.7	1.7
Forest Land Remaining Forest Land	0.7	0.5	1.7	0.9	1.3	1.1	1.0	1.5	1.5
Field Burning of Agricultural									
Residues	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.5	0.5
Municipal Solid Waste Combustion	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
International Bunker Fuels ^b	0.9	0.8	0.9	0.8	0.8	0.7	0.9	0.9	1.1
HFCs	13.6	38.6	74.9	81.5	87.8	94.1	101.1	107.1	112.1
Substitution of Ozone Depleting									
Substances	+	27.6	67.1	73.8	80.4	86.9	93.9	99.8	105.2
			_						

HCFC-22 Production	13.4	10.8	7.6	7.6	7.2	7.0	7.0	7.0	6.6
Semiconductor Manufacture	0.2	0.3	0.3	0.2	0.2	0.2	0.2	0.2	0.3
PFCs	20.0	15.5	13.6	7.3	9.2	7.6	6.7	6.6	6.7
Semiconductor Manufacture	2.6	4.4	5.7	4.1	4.3	4.1	4.0	3.9	4.4
Aluminum Production	17.4	11.1	7.9	3.2	4.9	3.5	2.7	2.8	2.3
SF ₆	30.3	26.0	17.8	17.4	16.7	16.8	16.7	17.0	16.1
Electrical Transmission and									
Distribution	24.8	19.9	14.0	14.0	13.4	12.9	13.0	13.0	12.3
Magnesium Production and		_							
Processing	5.1	5.2	2.8	2.7	2.7	3.2	3.0	3.0	2.9
Semiconductor Manufacture	0.5	0.8	1.0	0.7	0.6	0.8	0.8	0.9	0.9
Total	6,318.0	6,661.9	7,199.1	7,108.8	7,151.2	7,197.0	7,271.0	7,327.9	7,219.7

+ Does not exceed 0.05 Tg CO₂ Eq.

Table A-233: Change in U.S. Greenhouse Gas Emissions and Sinks Using TAR vs. SAR GWPs (Tg CO₂ Eg.)

.				3		(- 3			
Gas	1990	1995	2000	2001	2002	2003	2004	2005	2006
CO ₂	NC								
CH ₄	58.0	57.0	54.2	52.9	53.1	53.2	52.0	51.3	51.7
N_2O	(24.6)	(25.3)	(25.1)	(26.0)	(24.6)	(23.4)	(23.3)	(24.3)	(24.0)
HFCs	(21.9)	(17.8)	(25.1)	(14.7)	(15.2)	(8.2)	(11.3)	(12.0)	(9.3)
PFCs	(0.8)	(0.1)	0.1	0.4	` 0.Ś	`0.Ś	0.6	0.4	0.7
SF ₆	(2.3)	(2.0)	(1.4)	(1.3)	(1.3)	(1.3)	(1.3)	(1.3)	(1.2)
Total	8.3	11.8	2.7	11.2	12.5	20.7	16.6	14.2	17.8

NC (No change)

*Includes NF₃

7 8 9

10 11

Note: Totals may not sum due to independent rounding. Parentheses indicate negative values.

Table A-234: Change in U.S. Greenhouse Gas Emissions Using TAR vs. SAR GWPs (Percent)

Gas/Source	1990	199	5	2000	2001	2002	2003	2004	2005	2006
CO ₂	NC	N		NC						
CH ₄	9.5%	9.59	6	9.5%	9.5%	9.5%	9.5%	9.5%	9.5%	9.5%
N ₂ O	(4.5%)	(4.5%)	(4.5%)	(4.5%)	(4.5%)	(4.5%)	(4.5%)	(4.5%)	(4.5%)
SF ₆	(7.1%)	(7.1%		(7.1%)	(7.1%)	(7.1%)	(7.1%)	(7.1%)	(7.1%)	(7.1%)
HFCs	(61.7%)	(19.9%		(19.9%)	(12.9%)	(12.4%)	(7.1%)	(8.8%)	(8.9%)	(6.8%)
Substitution of Ozone Depleting	(100.0%)	(5.4%		(4.2%)	(3.3%)	(3.2%)	(3.2%)	(2.8%)	(2.4%)	(2.0%)
Substances										
HCFC-22 Production	(61.7%)	(60.1%)	(74.6%)	(61.9%)	(63.4%)	(43.6%)	(55.1%)	(57.5%)	(51.9%)
Semiconductor Manufacture	2.6%	2.69	6	2.6%	2.6%	2.6%	2.6%	2.6%	2.6%	2.6%
PFCs	(3.8%)	(0.7%)	0.5%	5.1%	5.2%	6.9%	9.0%	7.1%	11.2%
Semiconductor Manufacture	16.7%	17.19	6	16.0%	17.3%	23.7%	22.6%	22.1%	19.4%	23.4%
Aluminum Production	(6.3%)	(6.4%		(8.4%)	(7.4%)	(7.0%)	(7.0%)	(6.3%)	(6.5%)	(6.3%)
Total	0.1%	0.29	6	0.0%	0.2%	0.2%	0.3%	0.2%	0.2%	0.2%

NC (No change)

^a PFC emissions from CF₄ and C₂F₆ b HFC-23 emitted

12 13 14 15 16 17

18 19

 $^{\text{c}}$ Emissions from HFC-23, CF₄, C₂F₆, C₃F₈, SF₆, and the addition of NF₃

d SF₆ emitted

Note: Excludes Sinks. Parentheses indicate negative values.

Table A-235: Effects on U.S. Greenhouse Gas Emissions Using TAR vs. SAR GWPs (Tg CO₂Eg.)

Gas	Trend from 1990	to 2006	Revisions to Annual I	Estimates
	SAR	TAR	1990	2006
CO ₂	915.9	915.9	0.0	0.0
CH ₄	(66.4)	(72.7)	58.0	51.7
N_2O	(13.2)	(12.6)	(24.6)	(24.0)
HFCs, PFCs, and SF ₆ *	`55. 8	`71.Ó	(25.0)	(9.8)
Total	892.2	901.7	8.3	17.8
Percent Change	14.1%	14.3%	0.1%	0.2%

NC (No Change)

*Includes NF₃

a Sinks are only included in net emissions total, and are based partially on projected activity data. Parentheses indicate negative values (or sequestration).

^b Emissions from International Bunker Fuels and Biomass Combustion are not included in totals.

Note: Totals may not sum due to independent rounding.

9

Overall, these revisions to GWP values do not have a significant effect on U.S. emission trends, as shown in Table A-233 and Table A-234. Table A-236 below shows a comparison of total emissions estimates by sector using both the IPCC SAR and TAR GWP values. For most sectors, the change in emissions was minimal. The effect on emissions from waste was by far the greatest (8.7 percent in 2006), due the predominance of CH₄ emissions in this sector. Emissions from all other sectors were comprised of mainly CO₂ or a mix of gases, which moderated the effect of the changes.

Table A-236: Comparison of Emissions by Sector using IPCC SAR and TAR GWP Values (Tg CO₂Eg.)

Sector	1990	1995	2000	2001	2002	2003	2004	2005	2006
Energy									
SAR GWP (Used in Inventory)	5,204.0	5,529.6	6,067.8	5,982.8	6,036.3	6,098.4	6,170.2	6,195.0	6,078.4
TAR GWP, Updated	5,226.2	5,550.1	6,087.1	6,002.0	6,055.2	6,117.2	6,188.5	6,212.0	6,095.6
Difference (%)	0.4%	0.4%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%	0.3%
Industrial Processes									
SAR GWP (Used in Inventory)	297.1	308.9	324.9	294.9	303.9	297.7	310.3	311.8	316.3
TAR GWP, Updated	270.8	287.6	297.6	278.5	287.1	287.8	297.5	298.2	305.7
Difference (%)	-8.8%	-6.9%	-8.4%	-5.6%	-5.5%	-3.3%	-4.1%	-4.4%	-3.4%
Solvent and Other Product Use									
SAR GWP (Used in Inventory)	4.4	4.6	4.9	4.9	4.4	4.4	4.4	4.4	4.4
TAR GWP, Updated	4.2	4.4	4.7	4.7	4.2	4.2	4.2	4.2	4.2
Difference (%)	-4.5%	-4.5%	-4.5%	-4.5%	-4.5%	-4.5%	-4.5%	-4.5%	-4.5%
Agriculture									
SAR GWP (Used in Inventory)	608.7	617.3	618.4	646.3	617.5	596.2	594.3	620.9	618.9
TAR GWP, Updated	604.5	614.1	614.6	641.3	613.8	593.6	591.5	617.3	615.4
Difference (%)	-0.7%	-0.5%	-0.6%	-0.8%	-0.6%	-0.4%	-0.5%	-0.6%	-0.6%
Land Use, Land-Use Change, and									
Forestry									
SAR GWP (Used in Inventory)	(720.6)	(761.5)	(648.1)	(733.0)	(803.8)	(841.0)	(855.5)	(855.1)	(860.0)
TAR GWP, Updated	(720.1)	(761.3)	(646.9)	(732.6)	(803.0)	(840.3)	(855.0)	(854.2)	(859.1)
Difference (%)	-0.1%	0.0%	-0.2%	-0.1%	-0.1%	-0.1%	-0.1%	-0.1%	-0.1%
Waste									
SAR GWP (Used in Inventory)	179.6	176.8	155.6	152.1	154.5	160.3	157.7	158.7	161.0
TAR GWP, Updated	195.7	192.5	169.2	165.3	168.0	174.3	171.4	172.5	174.9
Difference (%)	9.0%	8.9%	8.7%	8.7%	8.7%	8.7%	8.7%	8.7%	8.7%
Net Emissions (Sources and									
Sinks)									
SAR GWP (Used in Inventory)	5,573.1	5,875.6	6,523.6	6,348.0	6,312.7	6,316.0	6,381.4	6,435.8	6,318.9
TAR GWP	5,581.4	5,887.4	6,526.2	6,359.2	6,325.2	6,336.7	6,398.0	6,450.0	6,336.7
Difference (%)	0.1%	0.2%	0.0%	0.2%	0.2%	0.3%	0.3%	0.2%	0.3%

NC (No change)

10 11 12

Note: Totals may not sum due to independent rounding. Parentheses indicate negative values.

6.2. Ozone Depleting Substance Emissions

Ozone is present in both the stratosphere, ⁷⁹ where it shields the earth from harmful levels of ultraviolet radiation, and at lower concentrations in the troposphere, ⁸⁰ where it is the main component of anthropogenic photochemical "smog." Chlorofluorocarbons (CFCs), halons, carbon tetrachloride, methyl chloroform, and hydrochlorofluorocarbons (HCFCs), along with certain other chlorine and bromine containing compounds, have been found to deplete the ozone levels in the stratosphere. These compounds are commonly referred to as ozone depleting substances (ODSs). If left unchecked, stratospheric ozone depletion could result in a dangerous increase of ultraviolet radiation reaching the earth's surface. In 1987, nations around the world signed the *Montreal Protocol on Substances that Deplete the Ozone Layer*. This landmark agreement created an international framework for limiting, and ultimately eliminating, the production of most ozone depleting substances. ODSs have historically been used in a variety of industrial applications, including refrigeration and air conditioning, foam blowing, fire extinguishing, as an aerosol propellant, sterilization, and solvent cleaning.

In the United States, the Clean Air Act Amendments of 1990 provide the legal instrument for implementation of the *Montreal Protocol* controls. The Clean Air Act classifies ozone depleting substances as either Class I or Class II, depending upon the ozone depletion potential (ODP) of the compound.⁸¹ The production of CFCs, halons, carbon tetrachloride, and methyl chloroform—all Class I substances—has already ended in the United States. However, large amounts of these chemicals remain in existing equipment,⁸² and stockpiles of the ODSs are used for maintaining the equipment. In addition, U.S. regulations require the recovery of ODSs in order to minimize "venting" to the atmosphere. As a result, emissions of Class I compounds will continue, albeit in ever decreasing amounts, for many more years. Class II designated substances, all of which are hydrochlorofluorocarbons (HCFCs), are being phased out at later dates because they have lower ozone depletion potentials. These compounds serve as interim replacements for Class I compounds in many industrial applications. The use and emissions of HCFCs in the United States is anticipated to increase over the next several years as equipment that use Class I substances are retired from use. Under current controls, however, the production for domestic use of all HCFCs in the United States will end by the year 2030.

In addition to contributing to ozone depletion, CFCs, halons, carbon tetrachloride, methyl chloroform, and HCFCs are also potent greenhouse gases. However, the depletion of the ozone layer has a cooling effect on the climate that counteracts the direct warming from tropospheric emissions of ODSs. Stratospheric ozone influences the earth's radiative balance by absorption and emission of longwave radiation from the troposphere as well as absorption of shortwave radiation from the sun, overall, stratospheric ozone has a warming effect.

The IPCC has prepared both direct GWPs and net (combined direct warming and indirect cooling) GWP ranges for some of the most common ozone depleting substances (IPCC 1996). See Global Warming Potential Values Annex for a listing of the net GWP values for ODS.

Although the IPCC emission inventory guidelines do not require the reporting of emissions of ozone depleting substances, the United States believes that no inventory is complete without the inclusion of these compounds. Emission estimates for several ozone depleting substances are provided in Table A- 237.

Table A-237: Emissions of Ozone Depleting Substances (Gg)

14DIC A- 231	. LIIII33	10113 0	I OZOII	c Debi	curry .	JUDSIC	111003	(Ug)									
Compound	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Class I																	
CFC-11	27.4	28.1	12.4	11.8	11.0	10.1	9.0	8.9	8.7	8.5	5 9.7	9.5	9.3	9.2	8.8	11.2	11.1

⁷⁹ The stratosphere is the layer from the top of the troposphere up to about 50 kilometers. Approximately 90 percent of atmospheric ozone is within the stratosphere. The greatest concentration of ozone occurs in the middle of the stratosphere, in a region commonly called the ozone layer.

⁸⁰ The troposphere is the layer from the ground up to about 11 kilometers near the poles and 16 kilometers in equatorial regions (i.e., the lowest layer of the atmosphere, where humans live). It contains roughly 80 percent of the mass of all gases in the atmosphere and is the site for weather processes including most of the water vapor and clouds.

⁸¹ Substances with an ozone depletion potential of 0.2 or greater are designated as Class I. All other substances that may deplete stratospheric ozone but which have an ODP of less than 0.2 are Class II.

 $^{^{82}}$ Older refrigeration and air-conditioning equipment, fire extinguishing systems, meter-dose inhalers, and foam products blown with CFCs/HCFCs may still contain ODS.

CFC-12	112.5	114.0	114.2	110.7	88.4	66.6	59.8	54.4	46.3	39.0	32.3	26.2	21.2	16.6	12.3	9.3	7.4
CFC-113	59.4	60.5	56.3	51.9	34.9	11.5	+	+	+	+	+	+	+	+	+	+	+
CFC-114	5.0	3.5	2.0	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.2	0.2
CFC-115	5.5	5.8	5.9	5.7	5.6	5.3	5.1	4.9	4.6	4.4	4.1	3.6	3.2	2.7	2.0	1.3	0.6
Carbon																	
Tetrachloride	4.3	4.4	3.6	2.7	1.9	0.9	+	+	+	+	+	+	+	+	+	+	+
Methyl																	
Chloroform	222.5	227.0	209.1	190.4	147.7	72.1	8.7	+	+	+	+	+	+	+	+	+	+
Halon-1211	1.6	1.7	1.7	1.7	1.7	1.6	1.6	1.6	1.5	1.3	1.1	0.9	8.0	0.7	0.7	0.7	0.7
Halon-1301	1.6	1.7	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.6	1.5	1.5	1.5	1.5	1.5	1.4	1.3
Class II	37.1	40.3	42.7	45.3	49.1	52.8	56.1	59.6	63.1	66.8	74.3	77.8	0.08	81.5	82.9	83.7	84.8
HCFC-22	+	+	0.1	0.1	0.2	0.3	0.3	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8	8.0	8.0
HCFC-123	+	+	+	0.6	1.1	1.2	1.2	1.3	1.4	1.4	1.5	1.5	1.5	1.5	1.5	1.5	1.5
HCFC-124	1.0	1.2	1.1	2.0	2.9	3.9	5.1	5.7	6.3	6.9	7.0	6.8	5.5	3.8	3.9	4.0	4.1
HCFC-141b	2.1	3.3	4.5	5.7	4.9	3.6	2.2	2.3	2.4	2.6	2.7	2.8	2.9	3.0	3.2	3.3	3.4
HCFC-142b	+	+	+	+	+	0.1	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.3
HCFC-																	
225ca/cb	27.4	28.1	12.4	11.8	11.0	10.1	9.0	8.9	8.7	8.5	9.7	9.5	9.3	9.2	8.8	11.2	11.1

⁺ Does not exceed 0.05 Gg.

Methodology and Data Sources

Emissions of ozone depleting substances were estimated using the EPA's Vintaging Model. The model, named for its method of tracking the emissions of annual "vintages" of new equipment that enter into service, is a "bottom-up" model. It models the consumption of chemicals based on estimates of the quantity of equipment or products sold, serviced, and retired each year, and the amount of the chemical required to manufacture and/or maintain the equipment. The Vintaging model makes use of this market information to build an inventory of the inuse stocks of the equipment in each of the end-uses. Emissions are estimated by applying annual leak rates, service emission rates, and disposal emission rates to each population of equipment. By aggregating the emission and consumption output from the different end-uses, the model produces estimates of total annual use and emissions of each chemical. Please see HFC and PFC Emissions from Substitution of Ozone Depleting Substances Annex of this Inventory for a more detailed discussion of the Vintaging Model.

Uncertainties

Uncertainties exist with regard to the levels of chemical production, equipment sales, equipment characteristics, and end-use emissions profiles that are used by these models. Please see the ODS Substitutes section of this report for a more detailed description of the uncertainties that exist in the Vintaging Model.

6.3. Sulfur Dioxide Emissions

Sulfur dioxide (SO₂), emitted into the atmosphere through natural and anthropogenic processes, affects the Earth's radiative budget through photochemical transformation into sulfate aerosols that can (1) scatter sunlight back to space, thereby reducing the radiation reaching the Earth's surface; (2) affect cloud formation; and (3) affect atmospheric chemical composition (e.g., stratospheric ozone, by providing surfaces for heterogeneous chemical reactions). The overall effect of SO₂-derived aerosols on radiative forcing is believed to be negative (IPCC 1996). However, because SO₂ is short-lived and unevenly distributed through the atmosphere, its radiative forcing impacts are highly uncertain. Sulfur dioxide emissions have been provided below in Table A-238.

The major source of SO₂ emissions in the United States is the burning of sulfur containing fuels, mainly coal. Metal smelting and other industrial processes also release significant quantities of SO₂. The largest contributor to U.S. emissions of SO₂ is electricity generation, accounting for 61 percent of total SO₂ emissions in 2004 (see Table A-239); coal combustion accounted for approximately 92 percent of that total. The second largest source was industrial fuel combustion, which produced 7 percent of 2005 SO₂ emissions. Overall, SO₂ emissions in the United States decreased by 34 percent from 1990 to 2005. The majority of this decline came from reductions from electricity generation, primarily due to increased consumption of low sulfur coal from surface mines in western states.

Sulfur dioxide is important for reasons other than its effect on radiative forcing. It is a major contributor to the formation of urban smog and acid rain. As a contributor to urban smog, high concentrations of SO₂ can cause significant increases in acute and chronic respiratory diseases. In addition, once SO₂ is emitted, it is chemically transformed in the atmosphere and returns to earth as the primary contributor to acid deposition, or acid rain. Acid rain has been found to accelerate the decay of building materials and paints, and to cause the acidification of lakes and streams and damage trees. As a result of these harmful effects, the United States has regulated the emissions of SO₂ under the Clean Air Act. The EPA has also developed a strategy to control these emissions via four programs: (1) the National Ambient Air Quality Standards program, 83 (2) New Source Performance Standards, 84 (3) the New Source Review/Prevention of Significant Deterioration Program, 85 and (4) the sulfur dioxide allowance program.

References

EPA (2005) *Air Emissions Trends—Continued Progress Through 2004*. U.S. Environmental Protection Agency, Washington DC. August 18, 2005 http://www.epa.gov/airtrends/2005/econ-emissions.html>.

EPA (2003) E-mail correspondence containing preliminary ambient air pollutant data between EPA OAP and EPA OAQPS. December 22, 2003.

Table A-238: SO₂ Emissions (Gg)

Sector/Source	1990	1995	2000	2001	2002	2003	2004	2005	2006
Energy	19,628	15,772	13,796	13,404	12,552	12,826	12,431	12,316	11,464
Stationary Combustion	18,407	14,724	12,848	12,461	11,613	11,956	11,625	11,573	10,784
Mobile Combustion	793	672	632	624	683	621	564	508	451
Oil and Gas Activities	390	335	286	289	233	226	220	213	207
Waste Combustion	38	42	29	30	23	22	22	22	22
Industrial Processes	1,307	1,117	1,031	1,047	850	804	800	797	793
Chemical Manufacturing	269	259	307	310	235	234	234	233	233
Metals Processing	659	481	284	301	193	193	193	193	193
Storage and Transport	6	2	6	6	4	4	4	4	4
Other Industrial Processes	362	366	372	389	295	294	293	292	292
Miscellaneous*	11	9	63	40	122	78	76	73	71
Solvent Use	+	1	1	1	+	+	+	+	+

^{83 [42} U.S.C § 7409, CAA § 109]

⁸⁴ [42 U.S.C § 7411, CAA § 111]

⁸⁵ [42 U.S.C § 7473, CAA § 163]

⁸⁶ [42 U.S.C § 7651, CAA § 401]

Degreasing	+	+	0	0	0	0	0	0	0
Graphic Arts	+		0	0	0	0	0	0	0
Dry Cleaning	NA		0	0	0	0	0	0	0
Surface Coating	+	1	0	0	0	0	0	0	0
Other Industrial	+	+	1	1	0	0	0	0	0
Non-industrial	NA								
Agriculture	NA								
Agricultural Burning	NA								
Waste	+	1	1	1	1	1	1	1	1
Landfills	+	+	1	1	1	1	1	1	1
Wastewater Treatment	+	+	+	+	+	+	+	+	+
Miscellaneous Waste	+	+	+	+	+	+	+	+	+
Total	20,935	16,891	14,829	14,452	13,403	13,631	13,232	13,114	12,258

Source: Data taken from EPA (2005) and disaggregated based on EPA (2003).

* Miscellaneous includes other combustion and fugitive dust categories.

Note: Totals may not sum due to independent rounding.

Table A-239: SO₂ Emissions from Electricity Generation (Gg)

Fuel Type	1990	1995	2000	2001	2002	2003	2004	2005	2006
Coal	13,808	10,526	9,621	9,056	8,707	9,049	8,760	8,729	8,020
Petroleum	580	375	429	478	459	477	462	460	423
Natural Gas	1	8	157	181	174	181	175	174	160
Misc. Internal Combustion	45	50	54	55	57	60	58	57	53
Other	NA	NA	78	74	71	74	71	71	65
Total	14,433	10,959	10,339	9,843	9,468	9,840	9,526	9,492	8,721

Source: Data taken from EPA (2005) and disaggregated based on EPA (2003). Note: Totals may not sum due to independent rounding.

⁺ Does not exceed 0.5 Gg NA (Not Available)

⁸ 9

6.4. Complete List of Source Categories

Chapter/Source	Gas(es)
Energy	, ,
Fossil Fuel Combustion	CO_2
Non-Energy Use of Fossil Fuels	CO ₂
Stationary Combustion (excluding CO ₂)	CH ₄ , N ₂ O, CO, NO _x , NMVOC
Mobile Combustion (excluding CO ₂)	CH ₄ , N ₂ O, CO, NO _x , NMVOC
Coal Mining	CH ₄
Abandoned Underground Coal Mines	CH ₄
Natural Gas Systems	CH ₄
Petroleum Systems	CH ₄
Municipal Solid Waste Combustion	CO_{2} , N_2O
Industrial Processes	-, -
Titanium Dioxide Production	CO_2
Aluminum Production	CO ₂ , CF ₄ , C ₂ F ₆
Iron and Steel Production	CO ₂ , CH ₄
Ferroalloy Production	CO ₂ , CH ₄
Ammonia Manufacture and Urea Application	CO ₂
Cement Manufacture	CO ₂
Lime Manufacture	CO ₂
Limestone and Dolomite Use	CO ₂
Soda Ash Manufacture and Consumption	CO ₂
Carbon Dioxide Consumption	CO_2
Phosphoric Acid Production	CO_2
Petrochemical Production	CH ₄ , CO ₂
Silicon Carbide Production and Consumption	CH ₄ , CO ₂
Lead Production	CO_2
Zinc Production	CO_2
Adipic Acid Production	N ₂ O
Nitric Acid Production	N ₂ O
Substitution of Ozone Depleting Substances	HFCs, PFCs ^a
HCFC-22 Production	HFC-23
Semiconductor Manufacture	HFCs, PFCs, SF ₆ ^b
Electrical Transmission and Distributing	SF ₆
Magnesium Production and Processing	SF ₆
Solvent and Other Product Use	CO, NO _x , NMVOC
N ₂ O Product Usage	N ₂ O
Agriculture	
Enteric Fermentation	CH ₄
Manure Management	CH_4 , N_2O
Rice Cultivation	CH ₄
Field Burning of Agricultural Residues	CH ₄ , N ₂ O
Agricultural Soil Management	N ₂ O, CO, NO _x
Land Use, Land-Use Change, and Forestry	, ,
CO ₂ Flux	CO ₂ (sink)
Cropland Remianing Cropland	CO ₂
Settlements Remaining Settlements	N ₂ O
Forestland Remaining Forestland	CH ₄ , N ₂ O
Waste	- 9
Landfills	CH ₄
Wastewater Treatment	CH ₄ , N ₂ O
Composting	CH ₄ , N ₂ O
a Includes HEC-23 HEC-32 HEC-125 HEC-134a HEC-143a HEC-	

a Includes HFC-23, HFC-32, HFC-125, HFC-134a, HFC-143a, HFC-236fa, CF₄, HFC-152a, HFC-227ea, HFC-245fa, HFC-4310mee, and

PFC/PFPEs.

b Includes such gases as HFC-23, CF4, C₂F₆, SF₆.

6.5. **Constants, Units, and Conversions**

Metric Prefixes

1

2 3

4

5

6

7

Although most activity data for the United States is gathered in customary U.S. units, these units are converted into metric units per international reporting guidelines. Table A- 240 provides a guide for determining the magnitude of metric units.

Table A-240: Guide to Metric Unit Prefixes

Prefix/Symbol	Factor
atto (a)	10 ⁻¹⁸
femto (f)	10 ⁻¹⁵
pico (p)	10 ⁻¹²
nano (n)	10 ⁻⁹
micro (µ)	10 ⁻⁶
milli (m)	10 ⁻³
centi (c)	10 ⁻²
deci (d)	10 ⁻¹
deca (da)	10
hecto (h)	10 ²
kilo (k)	10 ³
mega (M)	10 ⁶
giga (G)	10 ⁹
tera (T)	10 ¹²
peta (P)	10 ¹⁵
exa (E)	10 ¹⁸

Unit Conversions

```
8
 9
       1 kilogram
                         2.205 pounds
       1 pound
                         0.454 kilograms
       1 short ton
                         2,000 pounds
                                               0.9072 metric tons
       1 metric ton =
                         1,000 kilograms =
                                               1.1023 short tons
10
       1 cubic meter =
                          35.315 cubic feet
       1 cubic foot
                          0.02832 cubic meters
       1 U.S. gallon
                          3.785412 liters
       1 barrel (bbl)
                     =
                          0.159 cubic meters
                          42 U.S. gallons
       1 barrel (bbl)
                     =
                          0.001 cubic meters
       1 liter
11
       1 foot
                        0.3048 meters
       1 meter
                        3.28 feet
       1 mile
                    = 1.609 kilometers
                        0.622 miles
       1 kilometer =
12
                          43,560 square feet = 0.4047 hectares =
                                                                        4,047 square meters
       1 square mile =
                          2.589988 square kilometers
13
14
                To convert degrees Fahrenheit to degrees Celsius, subtract 32 and multiply by 5/9
```

15 To convert degrees Celsius to Kelvin, add 273.15 to the number of Celsius degrees

Density Conversions87

1

Methane	1 cubic meter	=	0.67606 kilograms
Carbon dioxide	1 cubic meter	=	1.85387 kilograms

3

Natural gas liquids	1 metric ton	=	11.6 barrels	=	1,844.2 liters
Unfinished oils	1 metric ton	=	7.46 barrels	=	1,186.04 liters
Alcohol	1 metric ton	=	7.94 barrels	=	1,262.36 liters
Liquefied petroleum gas	1 metric ton	=	11.6 barrels	=	1,844.2 liters
Aviation gasoline	1 metric ton	=	8.9 barrels	=	1,415.0 liters
Naphtha jet fuel	1 metric ton	=	8.27 barrels	=	1,314.82 liters
Kerosene jet fuel	1 metric ton	=	7.93 barrels	=	1,260.72 liters
Motor gasoline	1 metric ton	=	8.53 barrels	=	1,356.16 liters
Kerosene	1 metric ton	=	7.73 barrels	=	1,228.97 liters
Naphtha	1 metric ton	=	8.22 barrels	=	1,306.87 liters
Distillate	1 metric ton	=	7.46 barrels	=	1,186.04 liters
Residual oil	1 metric ton	=	6.66 barrels	=	1,058.85 liters
Lubricants	1 metric ton	=	7.06 barrels	=	1,122.45 liters
Bitumen	1 metric ton	=	6.06 barrels	=	963.46 liters
Waxes	1 metric ton	=	7.87 barrels	=	1,251.23 liters
Petroleum coke	1 metric ton	=	5.51 barrels	=	876.02 liters
Petrochemical feedstocks	1 metric ton	=	7.46 barrels	=	1,186.04 liters
Special naphtha	1 metric ton	=	8.53 barrels	=	1,356.16 liters
Miscellaneous products	1 metric ton	=	8.00 barrels	=	1,271.90 liters

4

5

6

7

Energy Conversions

Converting Various Energy Units to Joules

8 jo 9 tr 10 re

The common energy unit used in international reports of greenhouse gas emissions is the joule. A joule is the energy required to push with a force of one Newton for one meter. A terajoule (TJ) is one trillion (10^{12}) joules. A British thermal unit (Btu, the customary U.S. energy unit) is the quantity of heat required to raise the temperature of one pound of water one degree Fahrenheit at or near 39.2 Fahrenheit.

2.388×10¹¹ calories
23.88 metric tons of crude oil equivalent
947.8 million Btus
277,800 kilowatt-hours

Converting Various Physical Units to Energy Units

Data on the production and consumption of fuels are first gathered in physical units. These units must be converted to their energy equivalents. The conversion factors in Table A-241 can be used as default factors, if local data are not available. See Appendix A of EIA's *Annual Energy Review 2006* (EIA 2007a) for more detailed information on the energy content of various fuels.

16 17

11

12

13

14

15

Table A-241: Conversion Factors to Energy Units (Heat Equivalents)

Fuel Type (Units)	Factor
Solid Fuels (Million Btu/Short ton)	
Anthracite coal	22.573
Bituminous coal	23.89
Sub-bituminous coal	17.14
Lignite	12.866
Coke	24.8

87 Reference: EIA (2007a)

Natural Gas (Btu/Cubic foot) Liquid Fuels (Million Btu/Barrel)	1,027
Crude oil `	5.800
Natural gas liquids and LRGs	3.777
Other liquids	5.825
Motor gasoline	5.218
Aviation gasoline	5.048
Kerosene	5.670
Jet fuel, kerosene-type	5.670
Distillate fuel	5.825
Residual oil	6.287
Naphtha for petrochemicals	5.248
Petroleum coke	6.024
Other oil for petrochemicals	5.825
Special naphthas	5.248
Lubricants	6.065
Waxes	5.537
Asphalt	6.636
Still gas	6.000
Misc. products	5.796

Note: For petroleum and natural gas, *Annual Energy Review 2006* (EIA 2007b). For coal ranks, *State Energy Data Report 1992* (EIA 1993). All values are given in higher heating values (gross calorific values).

References

1

4

5

6

8

9

10

11

12

13

EIA (2007a) *Emissions of Greenhouse Gases in the United States 2006, Draft Report.* Office of Integrated Analysis and Forecasting, Energy Information Administration, U.S. Department of Energy, Washington, DC. DOE-EIA-0573(2006).

EIA (2007b) Annual Energy Review 2006. Energy Information Administration, U.S. Department of Energy, Washington, DC. DOE/EIA-0384(2006). June 2007.

EIA (1998) *Emissions of Greenhouse Gases in the United States*, DOE/EIA-0573(97), Energy Information Administration, U.S. Department of Energy. Washington, DC. October.

EIA (1993) *State Energy Data Report 1992*, DOE/EIA-0214(93), Energy Information Administration, U.S. Department of Energy. Washington, DC. December.

1 6.6. Abbreviations

AAPFCO American Association of Plant Food Control Officials

ABS Acrylonitrile Butadiene Styrene

AFEAS Alternative Fluorocarbon Environmental Acceptability Study

AFV Alternative Fuel Vehicle
AGA American Gas Association

AHEF Atmospheric and Health Effect Framework

APC American Plastics Council
API American Petroleum Institute

ASAE American Society of Agricultural Engineers
ASTM American Society for Testing and Materials

BEA Bureau of Economic Analysis, U.S. Department of Commerce

BoC Bureau of Census

BOD5 Biochemical oxygen demand over a 5-day period

BRS Biennial Reporting System

BTS Bureau of Transportation Statistics, U.S. Department of Transportation

Btu British thermal unit

C&EN Chemical and Engineering News
CAAA Clean Air Act Amendments of 1990

CAPP Canadian Association of Petroleum Producers

CBI Confidential Business Information

CFC Chlorofluorocarbon

CFR Code of Federal Regulations
CMA Chemical Manufacturer's Association
CMOP Coalbed Methane Outreach Program

CNG Compressed Natural Gas
CRF Common Reporting Format
CRM Crop Residue Management
CRP Conservation Reserve Program

CTIC Conservation Technology Information Center

CVD Chemical vapor deposition

DE Digestible Energy

DESC Defense Energy Support Center-DoD's defense logistics agency

DFAMS Defense Fuels Automated Management System

DIC Dissolved inorganic carbon

DM Dry Matter

DOC U.S. Department of Commerce
DoD U.S. Department of Defense
DOE U.S. Department of Energy
DOI U.S. Department of the Interior
DOT U.S. Department of Transportation

EAF Electric Arc Furnace EF Emission Factor

EGR Exhaust Gas Recirculation

EIA Energy Information Administration, U.S. Department of Energy

EIIP Emissions Inventory Improvement Program

EOR Enhanced oil recovery

EPA U.S. Environmental Protection Agency
FAA Federal Aviation Administration
FAO Food and Agricultural Organization
FCCC Framework Convention on Climate Change

FEB Fiber Economics Bureau
FHWA Federal Highway Administration
FIA Forest Inventory and Analysis
GAA Governmental Advisory Associates

GCV Gross calorific value GDP Gross domestic product

Gg Gigagram
GHG Greenhouse gas
GRI Gas Research Institute

GSAM Gas Systems Analysis Model GWP Global warming potential Hydrobromofluorocarbon

HC Hydrocarbon

HCFC Hydrochlorofluorocarbon **HDDV** Heavy duty diesel vehicle Heavy duty gas vehicle **HDGV** High density polyethylene HDPE **HFC** Hydrofluorocarbon HFE Hydrofluoroethers HHV Higher Heating Value HMA Hot Mix Asphalt

HTS Harmonized Tariff Schedule

ICAO International Civil Aviation Organization IEA International Energy Association

IFO Intermediate Fuel Oil

IISRP International Institute of Synthetic Rubber Products
ILENR Illinois Department of Energy and Natural Resources

IMO International Maritime Organization

IPAA Independent Petroleum Association of America
IPCC Intergovernmental Panel on Climate Change

LDDT Light duty diesel truck
LDDV Light duty diesel vehicle
LDGT Light duty gas truck
LDGV Light duty gas vehicle
LDPE Low density polyethylene
LEV Low emission vehicles

LFG Landfill gas

LFGTE Landfill gas-to-energy LHV Lower Heating Value

LLDPE Linear low density polyethylene

LMOP EPA's Landfill Methane Outreach Program

LNG Liquefied Natural Gas
LPG Liquefied petroleum gas(es)
LTO Landing and take-off

LULUCF Land use, land-use change, and forestry

MC Motorcycle

MCF Methane conversion factor

MGO Marine Gas Oil

MLRA Major Land Resource Area
MMCFD Million Cubic Feet Per Day
MMS Minerals Management Service
MMTCE Million metric tons carbon equivalent
MSHA Mine Safety and Health Administration

MSW Municipal solid waste MTBE Methyl Tertiary Butyl Ether

NAHMS National Animal Health Monitoring System

NAPAP National Acid Precipitation and Assessment Program NASS USDA's National Agriculture Statistics Service

NCV Net calorific value NEU Non-Energy Use

NEV Neighborhood Electric Vehicle

NGL Natural Gas Liquids

NIAR Norwegian Institute for Air Research

NIR National Inventory Report

NMVOC Non-methane volatile organic compound

NOx Nitrogen Oxides

NPRA National Petroleum and Refiners Association

NRC National Research Council

NRCS Natural Resources Conservation Service

NRI National Resources Inventory NSCR Non-selective catalytic reduction NVFEL National Vehicle Fuel Emissions Laboratory

NWS National Weather Service

OAP EPA Office of Atmospheric Programs

OAQPS EPA Office of Air Quality Planning and Standards

ODP Ozone Depleting Potential
ODS Ozone depleting substances

OECD Organization of Economic Co-operation and Development

OMS EPA Office of Mobile Sources
ORNL Oak Ridge National Laboratory

OSHA Occupational Safety and Health Administration

OTA Office of Technology Assessment

OTAQ EPA Office of Transportation and Air-Quality

PAH Polycyclic Aromatic Hydrocarbons
PDF Probability Density Function
PET Polyethylene Terephthalate

PFC Perfluorocarbon
PFPE Perfluoropolyether

POTW
Publicly Owned Treatment Works
Ppbv
Parts per billion (10⁹) by volume
PPC
Precipitated calcium carbonate
Ppmv
Parts per million(10⁶) by volume
Pptv
Parts per trillion (10¹²) by volume

PS Polystyrene
PSU Primary Sample Unit
PVC Polyvinyl chloride

QA/QC Quality Assurance and Quality Control

QBtu Quadrillion Btu

RCRA Resource Conservation and Recovery Act

SAE Society of Automotive Engineers

SAN Styrene Acrylonitrile

SAR IPCC Second Assessment Report

SBSTA Subsidiary Body for Scientific and Technical Advice

SCR Selective catalytic reduction

SNAP Significant New Alternative Policy Program

SNG Synthetic natural gas SOC Soil Organic Carbon

STMC Scrap Tire Management Council
SULEV Super Ultra Low Emissions Vehicle
SWANA Solid Waste Association of North America

TAME Tertiary Amyl Methyl Ether
TAR IPCC Third Assessment Report

TBtu Trillion Btu

TDN Total Digestible Nutrients

Tg CO₂ Eq. Teragrams carbon dioxide equivalent

TJ Teraioule

TLEV Traditional Low Emissions Vehicle

TRI Toxic Release Inventory

TSDF Hazardous waste treatment, storage, and disposal facility

TVA Tennessee Valley Authority

U.S. United States

UEP United Egg Producers
ULEV Ultra Low Emission Vehicle

UNEP United Nations Environmental Programme

UNFCCC United Nations Framework Convention on Climate Change

USAF United States Air Force

USDA United States Department of Agriculture

USFS United States Forest Service
USGS United States Geological Survey

VAIP EPA's Voluntary Aluminum Industrial Partnership

VKT Vehicle kilometers traveled
VMT Vehicle miles traveled
VOCs Volatile Organic Compounds

VS	Volatile Solids
WIP	Waste In Place
WMO	World Meteorological Organization
ZEVs	Zero Emissions Vehicles

6.7. Chemical Formulas

Table A-242: Guide to Chemical Formulas

Table A-242: Guide to Chemical Formulas		
Symbol	Name	
Al	Aluminum	
Al_2O_3	Aluminum Oxide	
Br	Bromine	
С	Carbon	
CH ₄	Methane	
C_2H_6	Ethane	
C ₃ H ₈	Propane	
CF ₄	Perfluoromethane	
C ₂ F ₆	Perfluoroethane, hexafluoroethane	
c-C ₃ F ₆	Perfluorocyclopropane	
C ₃ F ₈	Perfluoropropane	
c-C ₄ F ₈	Perfluorocyclobutane	
C ₄ F ₁₀	Perfluorobutane	
C ₅ F ₁₂	Perfluoropentane	
C ₆ F ₁₄	Perfluorohexane	
CF ₃ I	Trifluoroiodomethane	
CFCI ₃	Trichlorofluoromethane (CFC-11)	
CF ₂ Cl ₂	Dichlorodifluoromethane (CFC-12)	
CF ₃ Cl	Chlorotrifluoromethane (CFC-13)	
C ₂ F ₃ Cl ₃	Trichlorotrifluoroethane (CFC-113)*	
CCI ₃ CF ₃	CFC-113a*	
C ₂ F ₄ Cl ₂	Dichlorotetrafluoroethane (CFC-114)	
C ₂ F ₅ CI	Chloropentafluoroethane (CFC-115)	
CHCl ₂ F	HCFC-21	
CHF ₂ CI	Chlorodifluoromethane (HCFC-22)	
C ₂ F ₃ HCl ₂	HCFC-123	
C ₂ F ₄ HCl	HCFC-124	
C ₂ FH ₃ Cl ₂	HCFC-141b	
C ₂ H ₃ F ₂ Cl	HCFC-142b	
CF ₃ CF ₂ CHCl ₂	HCFC-225ca	
CCIF2CF2CHCIF	HCFC-225cb	
CCI ₄	Carbon tetrachloride	
CHCICCI ₂	Trichloroethylene	
CCl ₂ CCl ₂	Perchloroethylene, tetrachloroethene	
CH₃CI	Methylchloride	
CH ₃ CCl ₃	Methylchloroform	
CH ₂ Cl ₂	Methylenechloride	
CHCl ₃	Chloroform, trichloromethane	
CHF ₃	HFC-23	
CH ₂ F ₂	HFC-32	
CH₃F	HFC-41	
C ₂ HF ₅	HFC-125	
$C_2H_2F_4$	HFC-134	
CH ₂ FCF ₃	HFC-134a	
$C_2H_3F_3$	HFC-143*	
C ₂ H ₃ F ₃	HFC-143a*	
CH₂FCH₂F	HFC-152*	
C ₂ H ₄ F ₂	HFC-152a*	
CH₃CH₂F	HFC-161	
C ₃ HF ₇	HFC-227ea	
CF ₃ CF ₂ CH ₂ F	HFC-236cb	
CF₃CHFCHF2	HFC-236ea	
C ₃ H ₂ F ₆	HFC-236fa	
C ₃ H ₃ F ₅	HFC-245ca	
CHF ₂ CH ₂ CF ₃	HFC-245fa	
CF ₃ CH ₂ CF ₂ CH ₃	HFC-365mfc	
C ₅ H ₂ F ₁₀	HFC-43-10mee	

CF₃OCHF₂ HFE-125 CF₂HOCF₂H HFE-134 CH₃OCF₃ HFE-143a CF₃CHFOCF₃ HFE-227ea HCFE-235da2 CF3CHCIOCHF2 CF₃CHFOCHF₂ HFE-236ea2 CF₃CH₂OCF₃ HFE-236fa CF₃CF₂OCH₃ HFE-245cb2 CHF₂CH₂OCF₃ HFE-245fa1 CF₃CH₂OCHF₂ HFE-245fa2 CHF₂CF₂OCH₃ HFE-254cb2 CF₃CH₂OCH₃ HFE-263fb2 CF₃CF₂OCF₂CHF₂ HFE-329mcc2 CF₃CF₂OCH₂CF₃ HFE-338mcf2 CF₃CF₂CF₂OCH₃ HFE-347mcc3 CF₃CF₂OCH₂CHF₂ HFE-347mcf2 CF₃CHFCF₂OCH₃ HFE-356mec3 CHF2CF2CF2OCH3 HFE-356pcc3 HFE-356pcf2 CHF2CF2OCH2CHF2 CHF2CF2CH2OCHF2 HFE-356pcf3 CF₃CF₂CH₂OCH₃ HFE-365mcf3 CHF₂CF₂OCH₂CH₃ HFE-374pcf2 C₄F₉OCH₃ HFE-7100 $C_4F_9OC_2H_5$ HFE-7200 CHF2OCF2OC2F4OCHF2 H-Galden 1040x CHF2OCF2OCHF2 HG-10 CHF2OCF2CF2OCHF2 HG-01 CH₃OCH₃ Dimethyl ether CH_2Br_2 Dibromomethane CH₂BrCl Dibromochloromethane Tribromomethane CHBr₃ CHBrF₂ Bromodifluoromethane CH₃Br Methylbromide

CF₂BrCl Bromodichloromethane (Halon 1211) CF₃Br(CBrF₃) Bromotrifluoromethane (Halon 1301)

 $\begin{array}{ccc} \text{CF}_3 \text{I} & \text{FIC-13I1} \\ \text{CO} & \text{Carbon monoxide} \\ \text{CO}_2 & \text{Carbon dioxide} \\ \end{array}$

CaCO₃ Calcium carbonate, Limestone

CaMg(CO₃)₂ Dolomite

CaO Calcium oxide, Lime
Cl atomic Chlorine
F Fluorine
Fe Iron
Fe2O3 Ferric oxide
FeSi Ferrosilicon

H, H₂ atomic Hydrogen, molecular Hydrogen

H₂O Water

H₂O₂ Hydrogen peroxide

OH Hydroxyl

N, N₂ atomic Nitrogen, molecular Nitrogen

NH₃ Ammonia NH_4^+ Ammonium ion Nitric acid HNO₃ NF_3 Nitrogen trifluoride N_2O Nitrous oxide NO Nitric oxide NO_2 Nitrogen dioxide NO_3 Nitrate radical Na Sodium

Na₂CO₃ Sodium carbonate, soda ash

Na₃AlF₆ Synthetic cryolite

O, O ₂	atomic Oxygen, molecular Oxygen
O ₃	Ozone
S	atomic Sulfur
H ₂ SO ₄	Sulfuric acid
SF ₆	Sulfur hexafluoride
SF ₅ CF ₃	Trifluoromethylsulphur pentafluoride
SO ₂	Sulfur dioxide
Si	Silicon
SiC	Silicon carbide
SiO ₂	Quartz
4.50.00.00	

^{*} Distinct isomers.